Abstract: *Glyphodes pyloalis* Walker is a serious pest of mulberry trees in Iran. In this study, lethal (LC$_{30}$ = 19 ppm) and sublethal effects (LC$_{10}$ = 3.74 and LC$_{30}$ = 9.77 ppm) of lufenuron were evaluated against 4th instar larvae of *G. pyloalis*. After treating the larvae at LC$_{30}$ and LC$_{30}$ level, most of them died during the molting process and only a few individuals developed to the 5th larval instar. The highest rate of mortality was observed in 5th larval (68.42%) and pre-pupal (59.57%) stages at LC$_{30}$ concentration. Also, lufenuron caused an increase in larval, pre-pupal and pupal developmental periods. The successful pupation decreased to 53.64% at the LC$_{30}$. Also, no prepupa molted to pupation after treatment of larvae at the LC$_{30}$. Larval weight was significantly reduced at 48, 72 and 96 h after treatment, compared to the control. Adult emergence and female longevity were also reduced at LC$_{30}$. The LC$_{30}$ of lufenuron negatively affected reproduction of *G. pyloalis*. Larval content of carbohydrate and protein were decreased significantly 48 and 72 h after treatment, however, lipid and glycogen content were decreased significantly only 72 h after treatment at LC$_{10}$, LC$_{30}$ or LC$_{30}$. Findings indicated adverse effects on some biological and biochemical parameters at lethal and sublethal concentrations of lufenuron which necessitate further investigations for its application in an integrated management of *G. pyloalis*.

Keywords: *Glyphodes pyloalis*, lufenuron, fecundity, sub-lethal effects, IGR

Introduction

The lesser mulberry pyralid, *Glyphodes pyloalis* Walker (Lepidoptera: Pyralidae) is a serious leaf-damaging pest of mulberry trees in Iran (Jaafari Khaljiri *et al.*, 2006), eastern Georgia (Kanchaveli *et al.*, 2009), USA, Mexico, India, Japan and the Republics of Central Asia and Azerbaijan (Madyarov *et al.*, 2006; Mikaia, 2011). This insect has five larval instars. The larvae feed on basal epidermis and mesophyll of mulberry leaves. The amount of food eaten by the first and second instar larvae is negligible, but feeding increases in later instars. Fourth and fifth instar larvae secrete fine threads to fold the leaf and feed on the mesophyll inside the folds. Fifth instar larvae feed on the whole leaf until only the ribs remain. In Iran this pest is active in late spring, summer and early fall and its damage to mulberry leaves, have bad impacts on silk farming (Khosravi and Jalali Sendi, 2010; Aruga, 1994).

The use of Insect growth regulator (IGRs) compounds in insect control is known as insect
development inhibition, which inhibits or prevents normal metamorphosis of immature stages to the adult stages. IGRs are analogs of insect hormones those disrupt normal activity of the endocrine system, and affect development, reproduction, and metamorphosis. IGRs include juvenile hormone (JH) mimics, agonist ecdysone and chitin synthesis inhibitors (CSIs). CSIs, such as lufenuron inhibit production of chitin, an essential component of insect exoskeleton. The treated insects with CSIs cannot successfully molt to the next life stage (Hoffman and Lorenz, 1998). Compared with conventional insecticides, lufenuron exhibits excellent action against lepidopteran insects and shows a lower toxicity against vertebrates (Whiting et al., 2000). This compound exhibits lethal and sublethal effects on some pests species such as *Ephesia figulilella* Gregson (Lepidoptera: Pyralidae) (Khajepour et al., 2012), *Spodoptera littoralis* Bosid (Lepidoptera: Noctuidae) (Reda et al., 2010), *Spodoptera litura* Fabricious (Lepidoptera: Noctuidae) (Zhu et al., 2011) and *Pectinophora gossypii* (Saunders) (Lepidoptera: Gelechiidae) (Mervat et al., 2012).

The concern specifically addressed in the present study relates to the possible lethal and sublethal effects of lufenuron on the lesser mulberry pyralid, an important pest of mulberry leaves in northern Iran. Many authors have reported that CSIs disrupt normal activity of the endocrine system and cause prolongation of larval and pupal periods. Also, the longevity, fecundity and fertility of adult lepidopteran insects can be disrupted by these compounds (Mervat et al., 2012; Zhu et al., 2012; Reda et al., 2010).

Some biochemical studies have focused on evaluation of possible adverse effects of chemicals on insect storage of energy. In insects, carbohydrates, glycogen and lipids are closely related to physiological processes such as the flight, molting and reproduction (Ramdev and Rao, 1979). The content of carbohydrates and lipids in the hemolymph is an important indicator of the level of metabolism in insects, and a dynamic balance of the absorption, metabolism, and utilization by different tissues (Nath, 2003; Etebari et al., 2007). IGRs exert their insecticidal effects through their influence on development, metamorphosis and reproduction of the target insects by disrupting the normal activity of the endocrine system (Oberlander et al., 1997). LC$_{50}$ dose of lufenuron caused decrease total soluble protein and total lipid content of *P. gossypii* (Mervat et al., 2012). Application of essential oil of summer savory, *Satureja hortensis* L. (Family: Lamiaceae) decreased the amounts of protein, lipids and carbohydrates in *G. pyloalis* (Yazdani et al., 2012). The total protein content decreased in the house fly treated with lufenuron (Assar et al., 2010).

The objectives of this research were to evaluate the susceptibility of 4th instars of *G. pyloalis* to lufenuron. Then, the lethal and sublethal effects were studied on development, mortality, reproduction and larval biochemical composition (carbohydrate, lipid, protein and glycogen) at LC$_{10}$, LC$_{30}$ and LC$_{50}$ levels.

Materials and Methods

Insect rearing

Larvae of *G. pyloalis* were collected from infested mulberry trees (*Morus* sp) in June and July 2013 from Guilan Province, Iran. They were reared on mulberry (var. Shin Ichinoise) leaves in laboratory conditions (25 ± 1 °C, 75 ± 10% RH, 16:8 h L: D photoperiod) in plastic boxes (18 × 15 × 7 cm). Emerged adults of moth were identified by sex and kept in plastic containers (18 × 15 × 7 cm) provisioned with 10% honey solution. Fresh mulberry leaves, petioles of which were placed into vials containing water, were used as an oviposition substrate. After egg hatching, larvae were transferred onto fresh leaves (using a soft camel-hair brush) and leaves were replaced daily.

Toxicity tests

Leaf-dip method (Memarizadeh et al., 2011) was used to determine the susceptibility of newly molted 4th instars to lufenuron. Five
concentrations (5, 8.12, 13.48, 22.38, 40 mg/L) of a commercial formulation of lufenuron (Match® 50 EC, Syngenta; chemical formula: N-[[2,5 dichloro-4-(1,2,3,3,3 hexafluoro- propoxy)- phenyl]carbonyl]-2,6-difluoro-benzamide (CA)) were prepared in distilled water. Leaf disks (3.5 cm in diameter) were dipped in each concentration for 40 seconds. After drying at room temperature, the treated leaves were used to feed the 4th instar larvae. Ten 4th instars were placed in a plastic container (14 × 5 × 12 cm) containing two treated leaf disks with the same concentration and considered as one replication. Also, leaves dipped in water only were considered as controls. Six replicates were considered for each lufenuron concentration. Mortality was recorded 48 h after treatment, and LC_{10}, LC_{30} and LC_{50} were calculated using probit analysis by Polo-PC software (Leora Software, 1987).

Effects of lufenuron on biological parameters

Four hundred newly molted 4th instars in 20 replicates for each concentration (20 larvae/replicate) from laboratory colony were selected randomly and exposed to LC_{30} and LC_{50} concentrations of lufenuron. Larvae were monitored after 48-h and surviving larvae were fed with untreated mulberry leaves and observed daily to determine larval duration, the pupation, numbers of malformed pupae and emerged adults. Pupae were placed individually into a small plastic container (7 × 8 × 3.5 cm). More than 20 pupae were used for each treatment. One female and one male of resulting adults were placed together in a plastic container (14 × 5 × 12 cm) with a piece of cotton soaked in a 10% honey solution for food and allowed to mate. Fresh mulberry leaf was provided for oviposition that petioles of which were inserted into vials containing water and the top of the vial was sealed with cotton. Eggs laid on leaves were counted daily, and male and female moths were transferred to new plastic containers (14 × 5 × 12 cm) daily until their death. Larval weight at 48, 72 and 96 h after treatment, larval malformation, larval, pre-pupal and pupal developmental time and mortality rate, pupation rate, adult emergence, longevity and fecundity were also determined.

Biochemical studies

For these studies, 4th instars were treated with LC_{10}, LC_{30} or LC_{50} concentrations. After 48 and 72 h, the alive larvae were randomly selected and their bodies were homogenized in either sodium sulphate buffer solution (Na_{2}SO_{4} 2%) for detection of carbohydrate lipid and glycogen contents or in phosphate buffer for detection of protein content. The homogenized solution was centrifuged at 8000 × g, for 10 min at 4 °C and the supernatant was used for determination of amounts of carbohydrate, lipid and protein. The pellet was used for determination of glycogen content.

Determination of carbohydrate, lipid, protein and glycogen

Carbohydrate, lipid and glycogen contents were extracted according to the Van Handel and Day (1988) method. Protein content was determined according to the Bradford (1976) method.

Data analysis

Data obtained from the experiments were analyzed using analysis of variance (Proc ANOVA; SAS Software 2003) and T test. Means were compared by Tukey’s Studentized, accepting significant differences at P < 0.05. The corrected mortality of larvae was carried out using Abbott’s formula (Abbott, 1925).

Results

Toxicity of lufenuron on 4th instars

The LC_{10}, LC_{30} and median lethal concentrations (LC_{50}) of lufenuron with their confidence limits on 4th instars are shown in Table 1. The LC_{10}, LC_{30} and LC_{50} were estimated as 3.74, 9.77 and 19 ppm, respectively.
Mortality rate during the larval, pre-pupal and pupal stages
Percentage mortality of larvae, pre-pupae and pupae stages of *G. pyloalis* exposed to LC$_{30}$ or LC$_{50}$ concentrations of lufenuron or water controls are listed in Table 2. The highest rate of 5th instars mortality was found after exposure to the LC$_{50}$ concentration, compared with 5.88% mortality in controls. There was significant difference among treatments with control in the mortality rate of the 5th larval instar (F = 14.31, df = 2, 16, P = 0.0004). Mortality rate in pre-pupa in LC$_{50}$ concentration was higher than that of LC$_{30}$ and control (F = 8.08, df = 2, 8, P = 0.0099). All pre-pupae in LC$_{50}$ concentration died and no pupa emerged from them.

Effects on larval weight
The larval weight in different concentrations of lufenuron and control are shown in Fig. 1. Sublethal (LC$_{30}$) and lethal (LC$_{50}$) concentrations decreased larval weight 48, 72 and 96 h after treatment compared with controls. The larval weight was 13.25, 10.81 and 9.68 mg/larvae in LC$_{30}$ concentration, 9.75, 7.97 and 6.01 mg/larvae in LC$_{50}$ concentration after 48, 72 and 96 h, respectively. Analysis of variance showed significant difference among concentrations and control after 48 h (F = 27.80, df = 2, 19, P < 0.0001), after 72 h (F = 126.97, df = 2, 20, P < 0.0001) and 96 h (F = 168.17, df = 2, 20, P < 0.0001).

Developmental periods
The effect of different concentrations of lufenuron on developmental durations of *G. pyloalis* is shown in Table 2. The larval developmental period was increased with increasing concentrations of lufenuron as compared with control. Analysis of variance showed a significant differences between LC$_{30}$ or LC$_{50}$ concentrations compared with control (F = 47.49, df = 2, 36, P < 0.0001).

The pre-pupal developmental durations were increased in treatments and pupal durations was increased in LC$_{30}$ compared with controls (pre-pupal: F = 60.65, df = 2, 24, P < 0.0001, pupal: t = 7.69, df = 16, P < 0.0001).

Percentage of pupation, adult emergence, longevity, and fecundity
All of the pre-pupae emerging from larvae treated with the higher concentration (LC$_{30}$) died and only 53.64% of them developed to pupa at the lower concentration (LC$_{30}$) (Table 2). There was a significant difference in the percentage of pupation between concentrations and control (F = 105.78, df = 2, 7, P < 0.0001).

The percentage of the adult emergence was decreased in LC$_{30}$ concentration as compared with control (Table 3). The adult emergence at LC$_{30}$ (42.85%) was significantly lower than control (92.30%). (t = 2.51, df = 19, P = 0.0214). The LC$_{50}$ concentration caused 100% inhibition of adult emergence.

The female longevity was reduced to 4.5 days in LC$_{30}$ concentration and, there was significant difference between LC$_{30}$ concentration and control (t = 14, df = 8, P < 0.0001) and LC$_{50}$ concentration of *G. pyloalis* causing (100%) sterility at LC$_{50}$ concentration.

Table 1 Susceptibility of 4th larval instar of *Glyphodes pyloalis* to lufenuron after 48 h.

<table>
<thead>
<tr>
<th>N1</th>
<th>LC$_{10}$ (95% CL)2</th>
<th>LC$_{30}$ (95% CL)2</th>
<th>LC$_{50}$ (95% CL)2</th>
<th>Slope ± SE</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3.74 (1.22 - 6.30)</td>
<td>9.77 (6.30 - 12.98)</td>
<td>19 (14.48 - 25.28)</td>
<td>1.81 ± 0.36</td>
<td>0.87</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

1 Number of treated larvae.
2 95% confidence limits (CL) in parenthesis.
Table 2 Effects of LC30 and LC50 concentrations of lufenuron on developmental time and mortality of *Glyphodes pyloalis*.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Larval period ± SE (day)</th>
<th>Larval mortality ± SE (%)</th>
<th>Pre-pupal period ± SE (day)</th>
<th>Pre-pupal mortality ± SE (%)</th>
<th>Pupation ± SE (%)</th>
<th>Pupal period ± SE (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.62 ± 0.22 c</td>
<td>5.88 ± 0.25 b</td>
<td>2.23 ± 0.12 c</td>
<td>6.25 ± 0.25 b</td>
<td>93.66 ± 0.33 a</td>
<td>8.45 ± 0.15 b</td>
</tr>
<tr>
<td>LC30</td>
<td>8.38 ± 0.34 b</td>
<td>56.84 ± 0.42 a</td>
<td>3.40 ± 0.29 b</td>
<td>42.55 ± 0.57 a</td>
<td>53.64 ± 0.00 b</td>
<td>11.40 ± 0.50 a</td>
</tr>
<tr>
<td>LC50</td>
<td>10.87 ± 0.66 a</td>
<td>68.42 ± 0.31 a</td>
<td>10.00 ± 0.29 a</td>
<td>59.57 ± 0.5 a</td>
<td>0 c</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>47.49</td>
<td>14.31</td>
<td>60.65</td>
<td>8.08</td>
<td>105.78</td>
<td>7.69</td>
</tr>
<tr>
<td>df</td>
<td>2, 36</td>
<td>2, 16</td>
<td>2, 24</td>
<td>2, 8</td>
<td>2, 7</td>
<td>16</td>
</tr>
<tr>
<td>P</td>
<td>< 0.0001</td>
<td>0.0004</td>
<td>< 0.0001</td>
<td>0.0199</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

1 Means followed by different letters in a column are significantly different (Tukey’s test P < 0.05).

2 Means followed by different letters in a column are significantly different (t-student test).

3 Number of died pre-pupae were considered for 10 days.

Figure 1 Mean fresh weight of 4th instars of *Glyphodes pyloalis* exposed to LC30 and LC50 concentrations of lufenuron at 48 h (F = 27.80, df = 2, 19, P < 0.0001), 72 h (F = 126.97, df = 2, 20, P < 0.0001) and 96 h (F = 168.17, df = 2, 20, P < 0.0001) after treatment. Means within the same time after treatment marked with different letters are significantly different (P < 0.05).

Table 3 Effect of LC30 or LC50 concentrations of lufenuron on adult emergence, total inhibition of adult emergence, adult longevity, and fecundity of *Glyphodes pyloalis* treated at 4th larval instar.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Adult emergence ± SE (%)</th>
<th>Longevity (day ± SE)</th>
<th>Fecundity ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>92.30 ± 0.09</td>
<td>8.85 ± 0.4</td>
<td>5.14 ± 0.50</td>
</tr>
<tr>
<td>LC30</td>
<td>42.85 ± 0.19</td>
<td>4.5 ± 0.5</td>
<td>4.25 ± 0.25</td>
</tr>
<tr>
<td>t</td>
<td>2.51</td>
<td>10.62</td>
<td>1.99</td>
</tr>
<tr>
<td>df</td>
<td>19</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>P</td>
<td>0.0214</td>
<td>< 0.0001</td>
<td>0.0875</td>
</tr>
</tbody>
</table>

ns, * and *** indicate non significant, and significant at 0.05 and 0.001 using t-student test, respectively.
Effect on energy reserves

Carbohydrate
Carbohydrate content in 4th instars treated with LC10, LC30 or LC50 concentrations of lufenuron are shown in Fig. 2. Total carbohydrate level in controls was 5.36 and 11.81 mg/gr larva after 48 and 72 h, respectively. The total carbohydrate was significantly reduced 48 and 72 h after exposure to sublethal concentrations of lufenuron. The highest reduction was observed at LC50 concentration, 72 h after treatment (0.24 ± 0.15 mg/g larvae). Analysis of variance showed a significant difference among the concentrations and control 48 h (F = 12.60; df = 3, 11; P < 0.0021) and 72 h (F = 3946.53; df = 3, 11 P < 0.0001) after treatment.

Lipid
Treatment of 4th instars with LC10, LC30 or LC50 concentrations of lufenuron caused reduction in lipid content after 72 h comparing to controls (Fig. 3). Analysis of variance showed no significant differences among treatments compared with control after 48 h (F = 2.06; df = 3, 11; P = 0.1834). But significant differences were observed between LC30 and LC50 concentrations and control after 72 h (F = 4.14; df = 3, 11; P = 0.0479).

Protein
The protein content was reduced in larvae treated with LC10, LC30 or LC50 concentrations of lufenuron after 48 and 72 h as compared with control (Fig. 4). The amount of protein content after 72 h was 0.06 mg/larvae in LC50 compared with 0.09 mg/larvae in control. Analysis of variance showed a significant difference among LC50 and control after 48 h (F = 5.51, df = 3, 11, P = 0.0240) and 72 h (F = 10.77, df = 3, 11, P = 0.0035).

Glycogen
Treatment of 4th instar G. pyloalis with LC10, LC30 or LC50 lufenuron concentrations showed that glycogen content decreased 72 h after treatment (Fig. 5). The glycogen content was 0.02 mg/larvae in LC50 and 0.04 mg/larvae in control after 72 h. Analysis of variance showed no significant differences among concentrations compared with control after 48 h (F = 3.97, df = 3, 11, P = 0.0528). However, there was a significant difference among LC10, LC30 and LC50 treatments compared with control after 72 h (F = 5.34, df = 3, 11, P = 0.0260).

Figure 2 Effect of LC10, LC30 or LC50 concentrations of lufenuron on mean total carbohydrate (± SE) in 4th instars of Glyphodes pyloalis at 48 h (F = 12.60; df = 3, 11; P < 0.0021) and 72 h (F = 3946.53; df = 3, 11; P < 0.0001) after treatment. Means within the same time after treatment marked with different letters are significantly different (Tukey's test; P < 0.05).
Figure 3 Effect of LC₁₀, LC₃₀ or LC₅₀ concentrations of lufenuron on mean total lipid (± SE) in 4th instars of *Glyphodes pyloalis* at 48 h (F = 2.06, df = 3, 11, P = 0.1834) and 72 h (F = 4.14, df = 3, 11, P = 0.0479) after treatment. Means within the same time after treatment marked with different letters are significantly different (Tukey's test; P < 0.05).

Figure 4 Effect of LC₁₀, LC₃₀ or LC₅₀ concentrations of lufenuron on mean total protein (± SE) in 4th larval instar of *Glyphodes pyloalis* at 48 h (F = 5.51, df = 3, 11, P = 0.0240) and 72 h (F = 10.77, df = 3, 11, P = 0.0035) after treatment. Means within the same time after treatment marked with different letters are significantly different (Tukey's test; P < 0.05).
Lethal and sublethal effects lufenuron

Discussion

In this study, the effect of lufenuron was investigated on some biological and biochemical traits of *G. pyloalis*. Lufenuron showed highly toxic effects against *G. pyloalis* larvae in the present study. The lethal and sublethal concentrations of lufenuron caused mortality and malformation in 4th instar larvae of *G. pyloalis*. Malformed larvae unable to molt to 5th larval instar eventually died. Larval and pre-pupal mortality percentage increased with increasing the lufenuron concentrations. These results are consistent with results of Khajepour *et al.* (2012) who observed that lufenuron caused mortality in the last larval stage, defects in pupal and adult stages, and in some cases produced larval-pupal intermediates of *E. figulilella*. Reda *et al.* (2010) also reported mortalities in 2nd and 4th instars, morphological abnormalities of larvae, pupae and adults that emerged from 2nd and 4th instars of *S. littoralis* treated with an IGR, flufenoxuron (chitin synthesis inhibitor) the chemical structure and effects of which are similar to lufenuron.

The sublethal and lethal concentrations of lufenuron caused decreases in larval weight at 48, 72 and 96 h after treatment compared with control. The LC30 and LC50 concentrations reduced the body weight of *G. pyloalis*. Nevertheless these larvae survived for a longer duration before death or became pre-pupal.

Our results showed that lufenuron caused prolongation of larval, pre-pupal, and pupal developmental durations. Larval developmental duration was increased 1.49 and 1.93 times in LC30 and LC50 when compared with controls, respectively. Pre-pupal duration in LC30 and LC50 concentration treatment and pupal duration in LC30 concentration treatment increased significantly. Mervat *et al.* (2012) found that the LC50 concentration of lufenuron significantly prolonged duration of larval and pupal stages and significantly decreased larval weight of *P. gossypiella* (Saunders). Also, Zhu *et al.* (2012) reported that sublethal concentrations of hexaflumuron on the 3rd, 4th and 5th instars of *S. litura* caused prolongation of developmental time and a decrease in larval body weight. Also, their results showed that third instars treated with 0.5 μg ml⁻¹ hexaflumuron, died at 6th instar, while 1.2 μg ml⁻¹ hexaflumuron caused death of the 5th instars. Therefore, no pupae formed.

Khajepour
et al. (2012) reported that developmental time of the last instar larvae of *E. figulilella* were increased, when treated with lufenuron. Reda et al. (2010) reported the larval and pupal durations of *S. littoralis* were increased with increasing concentrations of flufenoxuron as compared with control. Butter et al. (2003) showed that 1\(^{\text{st}}\), 2\(^{\text{nd}}\), 3\(^{\text{rd}}\), 4\(^{\text{th}}\) and 5\(^{\text{th}}\) instar larvae of *Helicoverpa armigera* (Huber) (Lepidoptera: Noctuidae) treated with lufenuron had swollen heads and were significantly, smaller than the controls. Also, their results showed that larval weight was reduced significantly and pupal duration was significantly extended in LC\(_{50}\), LC\(_{50}\) and LC\(_{10}\) concentrations of lufenuron as compared with control.

Our results showed that no pupa emerged from larval stages after treatments with LC\(_{50}\) concentration of lufenuron. Treatment of 4\(^{\text{th}}\) instar larvae of *G. pyloalis* with lufenuron decreased significantly rate of the adult emergence and longevity of female adults in LC\(_{30}\) concentration as compared with control. The LC\(_{50}\) concentration inhibited 100% of adult emergence. These findings are in agreement with results of Reda et al. (2010) who reported that flufenoxuron decreased percentages of the adult emergence of *S. littoralis* and Butter et al. (2003) that reported same reduction in adult emergence of *H. armigera* treated with lufenuron. In contrast to our results, Mervat et al. (2012) reported that LC\(_{50}\) of lufenuron increased female and male longevity compared with controls.

Our result showed significant decrease in fecundity of *G. pyloalis* in LC\(_{30}\) concentration of lufenuron. *P. gossypiella* larvae treated with LC\(_{50}\) concentration of lufenuron had a high reduction in number of eggs laid by females (Mervat et al., 2010). Reda et al. (2010) reported a dose-dependent reduction in fecundity of *S. littoralis* after treating with flufenoxuron. Saenz-de-Cabezón et al. (2006) showed that lufenuron negatively affected the reproduction of *Lobesia botrana*, causing high percentage of sterility (90.2%). Also, lufenuron caused significant decline in fecundity of *H. armigera* (Butter et al., 2003). In these studies, lufenuron showed morphological changes to the ovipositor, interfered with vitellogenesis, caused testicular reduction, and sperm transport incapacity.

The content of macromolecules (i.e. protein, carbohydrates and lipids) is good indicator of the level of metabolism in insects treated with chemicals (Zhu et al., 2012). In our study, treatment of 4\(^{\text{th}}\) larval instar of *G. pyloalis* with LC\(_{10}\), LC\(_{30}\) or LC\(_{50}\) of lufenuron, affected the content of carbohydrate, lipid, protein and glycogen at 48 and 72 h after treatment. Carbohydrate content was reduced at 48 and 72 h after treatment. Decrease in carbohydrate content 72 h after treatment was much greater than that in controls. Treatments of *S. littura* with 0.1, 0.5, and 1.2 μg mL\(^{-1}\) hexafluuron showed that total carbohydrate slightly decreased in hematoplasma at 24 and 96 h after treatment (Zhu et al., 2012). Some of the reports indicated the possibility that benzoylephylphenyl ureas might affect the insect hormonal sites; thereby resulting in physiological disturbances such as inhibition of DNA synthesis (Soltani et al., 1984), altered carboxydrase and phenoloxidase activities (Ishaaya and Casida, 1974; Ishaaya and Ascher, 1977).

Our results showed that the lipid and glycogen content reduced 72- h after treatment and protein content reduced at 48 and 72 h after treatment compared with controls. This reduction could be due to the breaking the proteins into amino acids and their entry into the TCA cycle as keto acid (Schoonhoven, 1982) to compensate for lower energy caused by lufenuron stress. The present results are in agreement with those of Mervat et al. (2012) who reported LC\(_{50}\) of lufenuron caused reduction in the total soluble protein and total lipid content as compared with control. Yazdani et al. (2012) reported a significant decrease in amounts of protein, lipids and carbohydrates of *G. pyloalis* treated with essential oil of Summer Savory, *S. hortensis* L. (Family: Lamiaceae). Assar et al. (2010) also found that the total protein content decreased in the house fly treated with lufenuron. Khosravi et al. (2010)
observed a significant decrease in the amount of lipid and total protein in larvae of *G. pyloalis* treated with *Artemisia annua*.

Recently, sublethal effects of insecticides on pest arthropod populations have attracted much attention and our results show that lethal and sublethal concentrations of lufenuron not only inhibited larval growth and extended the duration of development of *G. pyloalis*, but also affected the metabolism of carbohydrates, lipids, proteins, and glycogen. According to our results, because of its toxic effects on larvae and sublethal effects on pre-pupal, pupal, and adult stages of *G. pyloalis*, lufenuron may provide more benefits to an integrated pest management program for *G. pyloalis*.

References

اثرات کشنده و زیرکشنده لوفنورن، بازدارنده سنتز گیاهی رويه (Lepidoptera: Pyralidae)

فروزان پیری، عنوانی، یکم صحراگرد و محمد قدیمیاری
گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران
پست الکترونیک: forozan.piri@yahoo.com
دریافت: 1 خرداد 1394؛ پذیرش: 25 آبان 1394

چکیده: بررسی تأثیر لوفنورن روی رهگیری توت، زیرکشنده، کشنده و شکستگی فراوانی از گیاهان در استان اصفهان در ایران انجام گرفت. نتایج نشان داده که لوفنورن، با روش نیز به صورت اثرات زیرکشنده و کشنده روی گیاهان، دارای تأثیری بر روی رهگیری توت و شکستگی فراوانی از گیاهان است. نحوه هرگونه تأثیر لوفنورن می‌تواند به صورت اثرات زیرکشنده و کشنده روی گیاهان باشد.

واژگان کلیدی: لوفنورن، زیرکشنده، کشنده، باروری، ویولای، رهگیری توت، اکسیداسیون، گیاه‌پزشکی، اثرات زیرکشنده و کشنده.